The realization space is [1 1 0 2*x1^2 - x1 0 1 1 0 2*x1^2 - x1 1 x1] [1 0 1 -x1^2 + 3*x1 - 2 0 1 0 2*x1^2 - x1 -x1^2 + 3*x1 - 2 x1 x1^2 - x1 + 1] [0 0 0 0 1 1 1 x1^2 - x1 + 1 -x1^2 + x1 - 1 x1 x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal with 2 generators avoiding the zero loci of the polynomials RingElem[x1, x1 - 1, x1^3 + 2*x1^2 - x1 + 1, x1^3 + 2*x1^2 - 3*x1 + 2, x1^3 + x1^2 - 2*x1 + 2, x1^3 - 2*x1 + 2, x1^2 - x1 + 1, x1 + 1, 2*x1^3 + 2*x1^2 - 3*x1 + 3, 2*x1^3 + x1^2 - 4*x1 + 3, x1^8 - 6*x1^6 + 3*x1^5 + 5*x1^4 - 10*x1^3 + 7*x1^2 - 3*x1 + 1, x1^6 - x1^5 - 2*x1^4 + 8*x1^3 - 8*x1^2 + 4*x1 - 1, x1^6 - x1^4 + 5*x1^3 - 6*x1^2 + 3*x1 - 1, x1^4 + x1^3 - x1^2 + x1 - 1, x1^4 - x1^3 - 2*x1^2 + 2*x1 - 1, x1^5 + x1^4 + 3*x1^2 - 2*x1 + 1, 2*x1^2 - 2*x1 + 1, x1^2 + 2*x1 - 2, 2*x1^3 + 2*x1^2 - 5*x1 + 4, x1^8 - 8*x1^6 + 4*x1^5 + 13*x1^4 - 24*x1^3 + 18*x1^2 - 8*x1 + 2, x1^8 - 6*x1^6 + 3*x1^5 + 9*x1^4 - 18*x1^3 + 16*x1^2 - 8*x1 + 2, 2*x1 - 1, x1^5 - 2*x1^3 + 6*x1^2 - 6*x1 + 2, x1^8 + 2*x1^7 - 9*x1^6 + 23*x1^4 - 34*x1^3 + 23*x1^2 - 9*x1 + 2, x1^8 + 2*x1^7 - 7*x1^6 + x1^5 + 16*x1^4 - 27*x1^3 + 19*x1^2 - 8*x1 + 2, x1^8 + 2*x1^7 - 9*x1^6 + 19*x1^4 - 30*x1^3 + 22*x1^2 - 9*x1 + 2, x1^6 + 3*x1^5 - 5*x1^4 - 7*x1^3 + 10*x1^2 - 6*x1 + 2, x1 - 2, x1^4 + x1^3 - 5*x1^2 + 3*x1 - 1, x1^8 + 2*x1^7 - 5*x1^6 + 8*x1^4 - 17*x1^3 + 16*x1^2 - 8*x1 + 2, x1^8 + 2*x1^7 - 7*x1^6 - x1^5 + 15*x1^4 - 24*x1^3 + 20*x1^2 - 9*x1 + 2]